Structural Bioinformatics and Proteomics
Structural Bioinformatics and Proteomics
Structural biology determines the 3-D shape of a protein letting us know how a protein functions and the role it plays within a cell. Bioinformatics data is derived from structural determination experiments which provide biological researchers to ask a variety of questions and allowing them to understand how DNA mutations might alter a protein’s shape, disrupt a catalytic site, or alter the binding affinity of a pharmaceutical compound. Proteomics is the large-scale study of proteomes. A proteome is a set of proteins produced in an organism, system, or biological context. The proteome differs from cell to cell and changes over time. The protein activity is also modulated by many factors in addition to the expression level of the relevant gene. Several high-throughput technologies have been developed to investigate proteomes in depth like mass spectrometry-based techniques and gel-based techniques.
Related Conference of Structural Bioinformatics and Proteomics
Structural Bioinformatics and Proteomics Conference Speakers
Recommended Sessions
- Computational Approaches in Structural Biology
- Structural Biology Complexity Arenas
- 3D Structure Determination
- Biomolecules
- Drug Designing
- Frontiers in Structural Biology
- Hybrid Approaches for Structure Prediction
- Molecular Modeling & Dynamics
- Recent Advances in Structural Biology
- Sequencing
- Signalling Biology
- Structural Bioinformatics and Proteomics
- Structural Biology and Single Molecules
- Structural Biology Databases
- Structural Biology in Cancer Research
- Structural Molecular Biology
- Structural Virology
Related Journals
Are you interested in
- 3-D Structure Determination - Structural Biology 2025 (Germany)
- Advancements in structural Biology - Structural Biology 2025 (Germany)
- Biochemistry - Glycobiology 2025 (Germany)
- Biochemistry and Biophysics - Structural Biology 2025 (Germany)
- Computational Approach in Structural Biology - Structural Biology 2025 (Germany)
- Drug Designing and Biomarkers - Structural Biology 2025 (Germany)
- Evolution of Glycan Diversity - Glycobiology 2025 (Germany)
- Frontiers in Structural Biology - Structural Biology 2025 (Germany)
- Gene regulation and Cell Signalling - Structural Biology 2025 (Germany)
- Genomics and Metabolomics - Glycobiology 2025 (Germany)
- Glycans in Diseases and Therapeutics - Glycobiology 2025 (Germany)
- Glycans in Drug Design - Glycobiology 2025 (Germany)
- Glycan’s - Glycobiology 2025 (Germany)
- Glycobiology - Glycobiology 2025 (Germany)
- Glycochemistry - Glycobiology 2025 (Germany)
- Glycoimmunology - Glycobiology 2025 (Germany)
- Glycoinformatics - Glycobiology 2025 (Germany)
- Glycolipids and Glycopeptides - Glycobiology 2025 (Germany)
- Glyconeurobiology - Glycobiology 2025 (Germany)
- Glycopathology - Glycobiology 2025 (Germany)
- Glycosience - Glycobiology 2025 (Germany)
- Hybrid approaches in Structure prediction - Structural Biology 2025 (Germany)
- Molecular Biology - Structural Biology 2025 (Germany)
- Molecular biology techniques - Structural Biology 2025 (Germany)
- Molecular Modelling and Dynamics - Structural Biology 2025 (Germany)
- Proteoglycan and Sialic acid - Glycobiology 2025 (Germany)
- Proteomics and Genomics - Structural Biology 2025 (Germany)
- Recent Advances in Glycobiology - Glycobiology 2025 (Germany)
- Sequencing Analysis - Structural Biology 2025 (Germany)
- Structural Bioinformatics - Structural Biology 2025 (Germany)
- Structural Biology - Structural Biology 2025 (Germany)
- Structural Biology Databases - Structural Biology 2025 (Germany)
- Structural Biology in Cancer Research - Structural Biology 2025 (Germany)
- Structural Enzymology - Structural Biology 2025 (Germany)
- Synthesis and Biological Role of Glycans - Glycobiology 2025 (Germany)